skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhou, Kun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We introduce a deep architecture named HoD-Net to enable high-order differentiability for deep learning. HoD-Net is based on and generalizes the complex-step finite difference (CSFD) method. While similar to classic finite difference, CSFD approaches the derivative of a function from a higher-dimension complex domain, leading to highly accurate and robust differentiation computation without numerical stability issues. This method can be coupled with backpropagation and adjoint perturbation methods for an efficient calculation of high-order derivatives. We show how this numerical scheme can be leveraged in challenging deep learning problems, such as high-order network training, deep learning-based physics simulation, and neural differential equations. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)